Performance Evaluation of Software Development Teams: a Practical Case Study

Int. Workshop on Practical Applications of Stochastic Modelling (PASM’11)

Paulo Fernandes, Afonso Sales, Alan R. Santos and Thais Webber
(Ricardo M. Czekster)

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
Paleoprospec Project - PUCRS/Petrobras, CAPES and CNPq - Brazil
Globally distributed projects

- dispersed multiple sites (borders and time zones)
- difficulties distributing resources (availability, expertise, and support)
- techniques to measure team’s performance indices

Why use analytical modeling in this context?

It allows to estimate project duration (or a given phase duration) considering heterogeneous participants and conditions/average costs for performing selected activities.
Globally distributed projects

- dispersed multiple sites (borders and time zones)
- difficulties distributing resources (availability, expertise, and support)
- techniques to measure team’s performance indices

Why use analytical modeling in this context?

It allows to estimate **project duration** (or a given **phase duration**) considering heterogeneous participants and conditions/average costs for performing selected activities.
Analytical Modeling in GSD projects

Target: geographically distributed projects
- practical case study for a project in a world wide IT company
- key factors in GSD: communication and coordination
- analytical modeling of participants activities and interactions

Tool: high-level modeling formalism
- Stochastic Automata Networks (SAN) [Plateau’85]
- modular representation (states, transitions, events)
- suitable for modeling independent entities with synchronizing activities
- numerical solution using GTAexpress software package [QEST’09]
Target: geographically distributed projects

- practical case study for a project in a world wide IT company
- key factors in GSD: **communication** and **coordination**
- analytical modeling of participants **activities** and **interactions**

Tool: high-level modeling formalism

- **Stochastic Automata Networks (SAN)** [Plateau’85]
- modular representation (states, transitions, events)
- suitable for modeling **independent entities** with **synchronizing activities**
- numerical solution using **GTAexpress software package** [QEST’09]
Analytical Modeling in GSD projects

Case study: Project ALPHA

- Globally distributed project: USA, India, Brasil and Malaysia
- Participants coordinated by a central team (project and delivery managers)
- Different participants roles (developers, testers, QA managers, ...) compose each team (both junior and senior expertises)

Project ALPHA execution phase - quantitative data

Execution phase: when the application components are created and tested based on the development plans

- Phase duration: 11 months × 22 workdays = 242 days
- Estimated effort: 3,364.35 hours
- Actual hours: 3,317.22 hours
- Impediments hours: 332 hours
Participants configuration

(2 partic. on central team plus 14 distributed participants)

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Role</th>
<th>Expertise</th>
<th>Site</th>
<th>Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Delivery Manager</td>
<td>Senior</td>
<td>USA</td>
<td>25%</td>
</tr>
<tr>
<td>1</td>
<td>Project Manager</td>
<td>Senior</td>
<td>Brazil</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Developer</td>
<td>Senior</td>
<td>Brazil</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>Developer</td>
<td>Junior</td>
<td>Brazil</td>
<td>75%</td>
</tr>
<tr>
<td>1</td>
<td>Tester</td>
<td>Senior</td>
<td>Brazil</td>
<td>20%</td>
</tr>
<tr>
<td>2</td>
<td>Business Analyst</td>
<td>Senior</td>
<td>USA</td>
<td>10%</td>
</tr>
<tr>
<td>1</td>
<td>Data Warehouse Eng.</td>
<td>Junior</td>
<td>USA</td>
<td>3%</td>
</tr>
<tr>
<td>3</td>
<td>User</td>
<td>Senior</td>
<td>USA</td>
<td>3%</td>
</tr>
<tr>
<td>1</td>
<td>System Eng.</td>
<td>Junior</td>
<td>Malaysia</td>
<td>5%</td>
</tr>
<tr>
<td>1</td>
<td>Database Admin.</td>
<td>Senior</td>
<td>India</td>
<td>5%</td>
</tr>
<tr>
<td>1</td>
<td>Data Warehouse Eng.</td>
<td>Senior</td>
<td>India</td>
<td>3%</td>
</tr>
</tbody>
</table>
Central team modeling with two automata

Available (A), Unavailable (U), Management (M), Collaboration (C)
Participant modeling with one automaton

Participant

<table>
<thead>
<tr>
<th>Type</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>loc</td>
<td>e_i</td>
</tr>
<tr>
<td>loc</td>
<td>r_i</td>
</tr>
<tr>
<td>syn</td>
<td>co_i</td>
</tr>
<tr>
<td>syn</td>
<td>s_i</td>
</tr>
</tbody>
</table>

Working (W), Seeking solution (S), Collaborating (C)
Central Team and Participant’s events (I)

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Available: central team becomes available to manage and collaborate with partic. (2 hours per workday)</td>
</tr>
<tr>
<td>u</td>
<td>Unavailable: central team unavailable to collaborate. (6 hours per workday)</td>
</tr>
<tr>
<td>e_i</td>
<td>Impediment: i-th participant goes to seek a solution. (junior spend on average 1 hour actually working - per workday - and seniors, 7 hours)</td>
</tr>
</tbody>
</table>

* Average values from historical data, surveys and interviews conducted by a project manager.
<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_i</td>
<td>Resume working: i-th participant resumes work after seeking the solution by him/herself. (junior, 7 hours seeking solutions; seniors, spend just 1 hour)</td>
</tr>
<tr>
<td>c_{oi}</td>
<td>Collaborate: this event synchronizes i-th participant automaton with central team Activities automaton, starting the collaboration between them. (if the central team is available - functional rate)</td>
</tr>
<tr>
<td>s_i</td>
<td>Provided support: synchronizes both i-th participant and central team Activities automata, indicating the participant resumes work after receiving support during the collaboration. (on average 2 hours per workday)</td>
</tr>
</tbody>
</table>

* Average values from historical data, surveys and interviews conducted by a project manager.
Instantiating the case study

Brazil
- Developer (senior)
 - W
 - C
 - S
 - Type: loc
 - Event: e_1
 - r_1

- Developer (junior)
 - W
 - C
 - S
 - Type: loc
 - Event: e_2
 - r_2

- Developer (junior)
 - W
 - C
 - S
 - Type: loc
 - Event: e_3
 - r_3

- Tester (senior)
 - W
 - C
 - S
 - Type: loc
 - Event: e_4
 - r_4

Malaysia
- System Engineer (junior)
 - W
 - C
 - S
 - Type: loc
 - Event: e_12
 - r_12

Delivery & Project Managers
- Availability
 - A
 - U

- Activities
 - M
 - W
 - C
 - S
 - Type: loc
 - Event: a
 - u

India
- Database Admin. (senior)
 - W
 - C
 - S
 - Type: loc
 - Event: r_13
 - e_13

- Data Warehouse Engineer (senior)
 - W
 - C
 - S
 - Type: loc
 - Event: r_14
 - e_14

USA
- Business Analyst (senior)
 - W
 - C
 - S
 - Type: loc
 - Event: e_6
 - r_6

- Business Analyst (senior)
 - W
 - C
 - S
 - Type: loc
 - Event: e_7
 - r_7

- Data Warehouse Engineer (junior)
 - W
 - C
 - S
 - Type: loc
 - Event: e_8
 - r_8

- User (senior)
 - W
 - C
 - S
 - Type: loc
 - Event: e_9
 - r_9
Steady-State probabilities (entities)

model composed of 16 automata (i.e., more than 19 million states)

<table>
<thead>
<tr>
<th>Entity</th>
<th>State</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Team (low availability)</td>
<td>A</td>
<td>25.00%</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>75.00%</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>56.27%</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>43.73%</td>
</tr>
<tr>
<td>Seniors (low support needed)</td>
<td>W</td>
<td>87.09%</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>11.96%</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.95%</td>
</tr>
<tr>
<td>Juniors (high support needed)</td>
<td>W</td>
<td>14.70%</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>78.26%</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>7.04%</td>
</tr>
</tbody>
</table>

* Only collaborations with CT are represented by (C)ollaboration state;
* Collaborations among participants are implicit in (W)orking and (S)eeking states of a participant.
Project working hours obtained from the model

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Expertise</th>
<th>Allocation (%)</th>
<th>State W (%)</th>
<th>Working hours per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Senior</td>
<td>100</td>
<td>87.09</td>
<td>6.97</td>
</tr>
<tr>
<td>3</td>
<td>Junior</td>
<td>75</td>
<td>14.70</td>
<td>2.65</td>
</tr>
<tr>
<td>1</td>
<td>Senior</td>
<td>20</td>
<td>87.09</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>Senior</td>
<td>10</td>
<td>87.09</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>Junior</td>
<td>3</td>
<td>14.70</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>Senior</td>
<td>3</td>
<td>87.09</td>
<td>0.63</td>
</tr>
<tr>
<td>1</td>
<td>Junior</td>
<td>5</td>
<td>14.70</td>
<td>0.06</td>
</tr>
<tr>
<td>1</td>
<td>Senior</td>
<td>5</td>
<td>87.09</td>
<td>0.35</td>
</tr>
<tr>
<td>1</td>
<td>Senior</td>
<td>3</td>
<td>87.09</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Total 13.69

*considered a 8-hour workday per participant
*calculated total hours in the (W)orking state
Comparative results: actual x model

Project ALPHA execution phase - quantitative data
- Phase duration: 11 months \times 22 workdays = 242 days
- Estimated effort: **3,364.35 hours** (2% error)
- Actual hours: **3,317.22 hours**

Project ALPHA execution phase - model results
- **Calculated working hours** of partic. in a workday: **13.69 hours**
- **Calculated effort**: **3,312.98 hours** (0.2% error)

 (13.69 hours \times 242 days)
<table>
<thead>
<tr>
<th>Qty.</th>
<th>Expertise</th>
<th>Allocation (%)</th>
<th>State C (%)</th>
<th>Cooperating hours per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Senior</td>
<td>100</td>
<td>0.95</td>
<td>0.076</td>
</tr>
<tr>
<td>3</td>
<td>Junior</td>
<td>75</td>
<td>7.04</td>
<td>1.267</td>
</tr>
<tr>
<td>1</td>
<td>Senior</td>
<td>20</td>
<td>0.95</td>
<td>0.015</td>
</tr>
<tr>
<td>2</td>
<td>Senior</td>
<td>10</td>
<td>0.95</td>
<td>0.015</td>
</tr>
<tr>
<td>1</td>
<td>Junior</td>
<td>3</td>
<td>7.04</td>
<td>0.017</td>
</tr>
<tr>
<td>3</td>
<td>Senior</td>
<td>3</td>
<td>0.95</td>
<td>0.007</td>
</tr>
<tr>
<td>1</td>
<td>Junior</td>
<td>5</td>
<td>7.04</td>
<td>0.028</td>
</tr>
<tr>
<td>1</td>
<td>Senior</td>
<td>5</td>
<td>0.95</td>
<td>0.004</td>
</tr>
<tr>
<td>1</td>
<td>Senior</td>
<td>3</td>
<td>0.95</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>1.43</td>
<td></td>
</tr>
</tbody>
</table>

*considered a 8-hour workday per participant
*calculated total hours on (C)ollaboration state to solve issues with CT
Comparative results: actual x model

Project ALPHA execution phase - quantitative data

- Phase duration: 11 months × 22 workdays = 242 days
- Estimated effort: 3,364.35 hours
- Actual hours: 3,317.22 hours
- Impediments hours: **332 hours**

Project ALPHA execution phase - model results

- **Calculated collaboration hours** per workday: **1.43 hours**
- **Calculated impediment hours:** 346.06 hours (4% error)

 (1.43 hours × 242 days)

relative error is probably related to the abstraction level used.
Different scenarios configurations

Other performance analysis

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Level of availability (event a)</th>
<th>Level of quality of support (event s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High</td>
<td>Higher</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>Lower</td>
</tr>
<tr>
<td>5</td>
<td>Low</td>
<td>Higher</td>
</tr>
<tr>
<td>6</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>7</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>8</td>
<td>Low</td>
<td>Lower</td>
</tr>
</tbody>
</table>

varying parameters to predict other behaviors
Estimated time for executing the project

<table>
<thead>
<tr>
<th>Actual proj. exec. time</th>
<th>Scenario</th>
<th>Estim. working h per day</th>
<th>Estimated proj. exec. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,317.22 h performed during 11 months</td>
<td>1</td>
<td>17.87 h</td>
<td>8.44 months</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15.40 h</td>
<td>9.79 months</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14.09 h</td>
<td>10.70 months</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>13.41 h</td>
<td>11.24 months</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>14.25 h</td>
<td>10.58 months</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>13.85 h</td>
<td>10.89 months</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>13.58 h</td>
<td>11.10 months</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>13.37 h</td>
<td>11.28 months</td>
</tr>
</tbody>
</table>

varying parameters to predict other behaviors
Conclusion

- theoretical modeling effort to describe a complex environment
- analytical modeling is useful to predict behaviors before implementing a project or process
- once validated models can provide new quantitative measures only changing model parameters
- can help team building process

Future works

- to capture other important dimensions such as different time-zones, geographic distance, communication patterns, teams coordination
- focus on software development processes such as flow of requirements engineering, development and testing, project schedule evolution, agile practices, etc.
Performance Evaluation of Software Development Teams: a Practical Case Study

Int. Workshop on Practical Applications of Stochastic Modelling (PASM’11)

Paulo Fernandes, Afonso Sales, Alan R. Santos and Thais Webber
(Ricardo M. Czekster)

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
Paleoprospec Project - PUCRS/Petrobras, CAPES and CNPq - Brazil