Performance Analysis Issues for Parallel Implementations of Propagation Algorithm

Afonso Sales
Leonardo Brenner
Luiz Gustavo Fernandes
Paulo Fernandes

São Paulo, november 12th, 2003
Introduction

- **Scope**: performance prediction of parallel applications using an analytical modeling approach

- Stochastic Automata Networks (SAN)

- **Main goal**: not a fine tuning performance prediction, but to point out the difficulties to model a parallel implementation using an analytical modeling formalism

- **Case study**: master/slave parallel version of propagation algorithm

- **Second goal**: identify the main needs and benefits of analytical modeling for this class of problem
Propagation Algorithm

- **Image Interpolation application**
 - Method to create smooth and realistic virtual views
 - Starts with two source images

- **Three steps**
 - **Build a dense matching map**
 - Distinguish matched areas from unmatched ones
 - Create interpolated virtual views
Propagation Algorithm

- Dense matching map construction
 - a) Detecting points of interest (each image)
 - b) Matching points of interest (seed pairs)
 - c) Propagating matches in the seed pairs neighborhood

- Propagation Algorithm
 - Input: seed pairs
 - Based on a region growing technique
 - Goal: match the largest possible region
Propagation Algorithm

- Example: Flower
Parallel Solution

- Features
 - Based on a master/slave scheme
 - Master distributes work and centralizes final results
 - Each slave receives a pair of corresponding images slices
Parallel Solution

- Features
 - Slaves run the propagation algorithm using a sub-set of seed pairs
 - Results from slaves are packed and sent to master through communication buffers
 - Master can bufferize these communication buffers
 - At the end of their work, slaves ask for more slices
Parallel Solution

- Seed pairs distribution

- Master assigns to each free node an image slice and the seed pairs located on it
Parallel Solution

- The Redundancy problem
 - Slaves know the whole image (to avoid the lost of border matches)
 - They can propagate over others slices
 - Some areas may be matched more than once
Parallel Solution

Solution

– Fix a limited extension for propagating outside the slices
SAN

- Formalism which represents systems by a collection of **subsystems** (automata A^1 and A^2)
- **Circles** → represent the states
- **Arrows** → transitions from one state to another
- **Events** → enable transitions
 - → have firing rates
 - → may have probabilities (π_1, π_2)
- **Synchronizing events** → enable transitions on more than one local state (e_4)
Proposed Model & Parameters

- **Input values**
 - **BL**: communication buffer length
 - **PS**: percentage of slices extension over its neighbors
 - **NS**: number of slices
 - **FI**: number of final matches (without redundancy)
 - **FR**: total number of final matches, including redundant matches
 \[
 FR = \left[2(1+PS) + (NS-2)(1+2PS)\right] \times \left(\frac{FI}{PS}\right)
 \]
 - **AF**: average final matches per slice
 \[
 AF = \frac{FR}{NS}
 \]
Proposed Model & Parameters

- **Rates**
 - s_i, up and down: insignificant time \rightarrow very high rates
 - \forall slave(i), the rate of r_i is defined as
 \[r_i = \text{Transmission speed} / \text{BL} \]
 - $\forall r_i$ of slave(i), probabilities π_1 e π_2 are given by
 \[\pi_2 = \min(\text{BL} / \text{AF}, 1) \]
 \[\pi_1 = 1 - \pi_2 \]
 - \forall slave(i), the rate of l_i is defined as
 \[l_i = \text{BL} * \text{Node Speed} / \text{Non-matches} \]
 - The rate of the event c is given by:
 \[c = \text{Node Speed} / \text{BL} \]
Concluding Remarks

- Parallel solution behavior easily described (states and events)
- Rates and probabilities → less intuitive
- The main difficulty was to extract the prediction information from the stationary solution
Concluding Remarks

- Future work: verify the accuracy of the proposed model by comparing with some real parallel implementations
- The applicability and usefulness of the proposed technique is yet to prove
- But, the effort of exploring this possibility is worthwhile
Acknowledgments

- Thanks to Lucas Baldo and Pedro Velho

- Work done with scholarships and grants from
 - Capes
 - CNPq
 - PUC-RS CAP/HP Brasil Project
Parallel Solution

- Global Scheme